obtained by Heldman and Thurmond for $\ln \gamma_{1}$ at 25° is a result of their failing to take into consideration the change of the heat of fusion with temperature.

It can be concluded from the present study that a solution of aluminum bromide in a normal hydrocarbon becomes more ideal as the number of carbon atoms in the hydrocarbon increases.

From the relationship of the experimental solubility curves for aluminum bromide in n-butane and n-hexane, it is further concluded that such systems are quite regular in the Hildebrand sense, i.e., the solubility curves for any one solute in a number of different solvents will form a family of curves.

Summary

The solubility of aluminum bromide in n-hexane has been measured from 30.6° to the melting point of the salt.

The difference between the actual and the ideal solubility of aluminum bromide in n-hexane and n-butane is in approximate conformance with the internal pressure characteristics of these hydrocarbons according to the equation of Hildebrand.

Data are still not sufficient to allow the prediction of the solubility of aluminum bromide in a normal paraffin hydrocarbon.
Dallas, Texas Received February 10, 194^{-}
[Contribution from the Chemistry Department of the University of Calffornia at LoS Angeles, and the Kedzie Chemical Laboratory, Michigan State College]

The Electric Moments of Some Aromatic Selenium Compounds

By Max T. Rogers and Tod W. Campbell

Very few measurements of the dipole moments of organic compounds of selenium have been made. Since information concerning bond angles, bond moments, and resonance in selenium compounds may be derived from such data, the electric moments of a series of aromatic selenides, diselenides and selenocyanates have been measured in benzene solution.

Experimental

Materials

Benzene.-J. T. Baker C. P. benzene was dried over sodium and filtered before use, $d^{25_{4}} 0.87340, n^{25}$ D 1.4978 .

Purification and Analysis of Compounds.-The compounds reported are all solids described in the literature. They were obtained in a high state of purity by repeated fractional crystallization to constant melting point. Most were analyzed for selenium by a flame combustion method. ${ }^{1}$

Dibenzyl diselenide was prepared by allowing benzyl selenocyanate to stand in methanol for ten days. The crude product was purified and analyzed ${ }^{1}$; m. p. 93°.

Diselenides.-Other diselenides were prepared from the corresponding Grignard reagent by addition of purified ${ }^{2}$ selenium. The resulting selenophenol was oxidized to the diselenide with a stream of air ${ }^{2,3}$; diphenyl diselenide, m. p. 63°; di- p-tolyl diselenide, m. p. 47°; di-p-bromophenyl diselenide, m. p. 108°.

Selenides.-These were prepared from the corresponding diazotized amine and potassium selenide ${ }^{4}$; di-p-tolyl selenide, m. p. 69.5; di-p-chlorophenyl selenide, m. p. 96°. Benzyl selenocyanate was prepared from benzyl chloride and potassium selenocyanate in alcohol, ${ }^{5} \mathrm{~m} . \mathrm{p}$. 72°.

Selenocyanates.-Other selenocyanates were prepared from the corresponding diazotized amine and potassium

[^0]selenocyanate after the method of Behagel and Rollman ${ }^{6}$; p-tolyl selenocyanate, m. p. 70°; p-chlorophenyl selenocyanate, m. p. 55°.

Apparatus and Methods

Electric moments were determined in benzene at 25° by the dilute solution method. Dielectric constants were measured to ± 0.001 with a hetero-dyne-beat apparatus previously described ${ }^{7}$; densities to ± 0.00005 with a graduated pycnometer ${ }^{8}$ of $10-\mathrm{ml}$. capacity. Refractive indices were determined to ± 0.0001 with a Zeiss Abbe refractometer. The mole refractions of the solids were calculated from the refractive indices $n^{25} \mathrm{D}$ of the solutions using the equations

$$
R_{12}=\frac{\left(n^{2}-1\right) M_{1} f_{1}+M_{2} f_{2}}{\left(n^{2}+2\right) d}
$$

and $M R_{\mathrm{D}}$ (solute) $=R_{2}=\left(R_{12}-R_{1}\right) / f_{2}+R_{1}$ where R_{1}, R_{2} and R_{12} are the mole refractions of solvent, solute, and solution, respectively; d the density of a solution containing mole fraction f_{2} of solvent of molecular weight M_{1}. The average of the values of $M R \mathrm{D}$ obtained as above from solutions of different concentration, was used as the sum of the atomic and electronic polarizations in calculating $\mu .{ }^{9}$ Since the dispersion correction to $M R_{\mathrm{D}}$ and the atomic polarization tend to cancel both have been neglected rather than try to estimate two small uncertain quantities. ${ }^{10}$

The experimental data and molar polarizations are shown in Table I; the derived values of the molar polarization at infinite dilution P_{∞}, the mole refraction $M R_{D}$, and the dipole moment μ,
(6) O. Behagel and M. Rollman, J. prakt. Chem., 123, 336 (1929)
(7) M. T, Rogers and J. D. Roberts, This Journal, 68, 843 (1946).
(8) G. R. Robertson, Ind. Eng. Chem. Anal. Ed., 11, 464 (1936)
(9) For method of calculation, see Smyth, "Dielectric Constants and Molecular Structure," Reinhold Publishing Co., New York, N. Y., 1931.
(10) C. P. Smyth, This Journal, 51, 2051 (1929).

important when the observed moment is low; the experimental error is also larger in these cases.

The observed dipole moments ${ }^{12}$ of diphenyl sulfide (1.50) and di-p-tolyl sulfide (1.93) by a similar calculation lead to a value of the bond moment $\mathrm{C}_{\mathrm{ar}}-\mathrm{S}=1.00$ and $\angle \mathrm{C}-\mathrm{S}-\mathrm{C}=115^{\circ}$ in aromatic sulfides. These angles are close to those reported for diphenyl ethers from electric moment data ${ }^{13}$ and an electron diffraction study. ${ }^{14}$ Although the probable error is large in angles determined in this way from dipole moment data, the consistency of the results seems to indicate that the above values are at least approximately correct.

Since the electronegativity of carbon, sulfur and selenium are nearly the same, the comparatively large values of the $\mathrm{C}-\mathrm{S}$ and $\mathrm{C}-\mathrm{Se}$ moments indicate that the contribution of structures of the type $:\langle=-\square$ to the ground state of the molecule is small; apparently only in diphenyl ether (bond moment $\mathrm{C}_{\mathrm{ar}}-\mathrm{O}=0.65$) do these structures contribute appreciably and lower the bond moment.

From the observed moments of the diselenides, we may calculate values of $\angle \mathrm{C}$-Se-Se using the bond moments derived above. If free rotation about the $\mathrm{Se}-\mathrm{Se}$ bond is assumed, the observed moments of diphenyl diselenide, 1.67, and di-ptolyl diselenide, 2.29 , lead to values of $\angle \mathrm{C}-\mathrm{Se}-\mathrm{Se}$ $=114^{\circ}$ and $105^{\circ} 30^{\prime}$, respectively. The average, 110°, is close to the value $\angle \mathrm{C}-\mathrm{S}-\mathrm{S}=107 \pm 3^{\circ}$ found in an electron diffraction investigation of dimethyl disulfide. ${ }^{15}$ The calculated moment of di- p-bromophenyl diselenide using $\angle \mathrm{C}$-Se-Se $=$ 110° and the bond moment values previously obtained is 0.31 ; the observed value, 0.70 , is not in disagreement with this since, as mentioned above, the probable error in dipole moments measured in solution is large when the moment is small. The observed electric moment of dibenzyl diselenide, 1.54 , leads to a value of bond moment $\mathrm{C}_{\text {aliphatic }}-\mathrm{Se}$ $=0.78\left(0.10\right.$ less than $\left.\mathrm{C}_{\mathrm{ar}}-\mathrm{Se}\right)$ if $\angle \mathrm{C}-\mathrm{Se}-\mathrm{Se}=$ 110° is used.

The moments of diphenyl disulfide ${ }^{12}$ and di- p nitrophenyl disulfide calculated using the bond moment $\mathrm{C}_{\mathrm{ar}}-\mathrm{S}=1.0$ and $\angle \mathrm{C}-\mathrm{S}-\mathrm{S}=110^{\circ}$ are 1.82 and 3.32 , respectively; the observed values are 1.81 and 3.56 .

The observed moments of the diselenides and disulfides could also be accounted for by a fixed skew configuration of the molecules as observed for

[^1]hydrogen peroxide, ${ }^{16}$ with the two C -Se bonds lying in planes making a dihedral angle of about 90°.

The experimental values of the moments of p-tolyl selenocyanate and p-chlorophenyl selenocyanate may be used to calculate simultaneously the magnitude and direction of the moment of the selenocyanate group. Assuming free rotation about the C -Se bond, and using the same bond moments as before, it is found that the group moment $\mathrm{C}_{\mathrm{ar}}-\mathrm{SeCN}=3.83$, in a direction inclined $126^{\circ} 30^{\prime}$ to the line through the axis of the benzene ring and the Se atom. Since $\angle \mathrm{C}-\mathrm{Se}-\mathrm{C}$ might be expected to be near 125°, the group dipole is largely along the SeCN direction as would be anticipated. The $\mathrm{C}_{a r}-\mathrm{SCN}$ moment calculated from Bergmann's data ${ }^{17}$ by the above method is 3.36 , 0.47 less than the $\mathrm{C}_{\mathrm{ar}}-\mathrm{SeCN}$ moment, indicating perhaps a slightly larger contribution of the structure

The bond moment calculated for $\mathrm{C}_{\text {aliphatic }}-\mathrm{SeCN}$ from the observed dipole moment of benzyl selenocyanate (assuming tetrahedral angles for carbon) is 3.74 ; this is equal, within experimental error, to the value for $\mathrm{C}_{\mathrm{ar}}-\mathrm{SeCN}$ so no attempt has been made to calculate a mesomeric moment for the selenocyanate group.

Summary

The electric moments of nine aromatic selenides, diselenides and selenocyanates have been measured in benzene solution at 25°.

Assuming additivity of bond moments and constancy of bond moments and of bond angles within a given series, the bond moments $\mathrm{C}_{\text {aromatic }}-\mathrm{Se}=$ 0.88 and $\mathrm{C}_{\text {aliphatic }}-\mathrm{Se}=0.78$, and the angle $\angle \mathrm{C}$ -$\mathrm{Se}-\mathrm{C}$ in aromatic selenides $=115^{\circ}$, have been calculated. If free rotation about the $\mathrm{Se}-\mathrm{Se}$ bond of diselenides is further assumed, $\angle \mathrm{C}-\mathrm{Se}-\mathrm{Se}=$ 110° is obtained. From the electric moments of the selenocyanates, the group moment $\mathrm{C}-\mathrm{SeCN}=$ 3.83 , in a direction making an angle of $126^{\circ} 30^{\prime}$ with the C-Se bond, has been derived. The bond angles agree, within their rather large probable errors, with available data on analogous oxygen and sulfur compounds.
Los Angeles, California
East Lansing, MichigaN Received December 28, 1946

[^2]
[^0]: (1) J. D. McCullough, T. W. Campbell and N. J. Krilanovich, Ind. Eng. Chem. Anal. Ed., 18, 638 (1946); the analyses of seven of the compounds used here are given in this article.
 (2) T. W. Campbell and J. D. McCullough, This Journal, 67, 1965 (1945).
 (3) D. G. Foster, "Organic Syntheses," Vol. XXIV, John Wiley and Sons, New York, N. Y., 1944, p. 89.
 (4) H. M. Leicester, "Organic Syntheses," Coll. Vol. II, John Wiley and Sons, N. Y., 1943, p. 238.
 (5) C. L. Jackson, Ann., 179, 1 (1875).

[^1]: (13) I. E. Coop and L. E. Sutton, J. Chem. Soc., 1869 (1938).
 (14) L. R. Maxwell, S. B. Hendricks and V. M. Mosley, J. Chem. Phys., 3, 699 (1935).
 (15) D. P. Stevenson and J. Y. Beach, This Journal, 60, 2872 (1938).

[^2]: (16) C. S. I.u. E. W. Hughes and P. A. Giguere, ibid., 63, 150: (1941).
 (17) E. Bergmann and M. Tschnudnowsky, Z. physik. Chem., B17, 107 (1932;

